

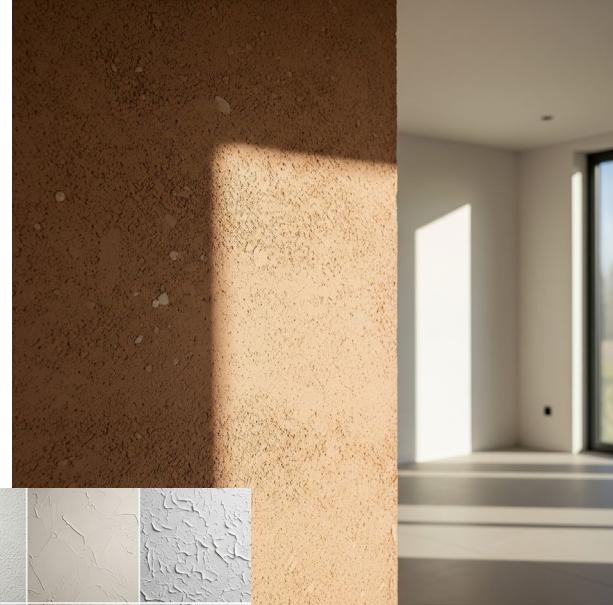
New European Bauhaus Academy

Week 2: Material Science
and Mix Design

Volute Studio

**Circular
Bio-based
Europe**
Joint Undertaking

 Bio-based Industries
Consortium



Co-funded by
the European Union

Learning Objectives

Content:

- Understand the main components of plaster and their functions
- Identify sustainable sources of recycled materials
- Learn how to design mixes for different wall finishes
- Explore the role of additives, fibers, and pigments

What Is Plaster?

A paste of binders, aggregates, and water applied to surfaces

Hardens through evaporation or chemical reaction

Used for protection, texture, and aesthetics

MAIN COMPONENTS OF

GYPSUM

Setting and
gysyer strength
strength

LIME

Workability
Durability for
of pesides
gysuer

SAND

Improves
properties for
and sincion and
adhesion

SAND

Workability
Durabilts
sprability for
and-economy

SAND

Bulk economy
asperfeict for
opperiestine
upser

AGGERGATES

Water retention
watention and
adhesion

Common Binder Types

- **Gypsum** (common & recyclable)
- **Clay** (natural, breathable)
- **Lime** (air & hydraulic, traditional and eco-friendly)

Recycled Plaster as Binder

Recovered from drywall, casting waste

Requires crushing and sieving

Can replace commercial gypsum in eco-friendly finishes

Aggregates – Strength and Texture

Sand (most common)

Crushed brick, marble powder, bio-based fillers (e.g., hemp)

Local materials reduce footprint and enhance texture

Mix Design Ratios

Standard base coat (e.g., 1 part binder : 2.5 parts sand)

Adjusting water for workability

Additives: 2–5% by weight (e.g., starch, clay)

Additives and Enhancers

Fibers (straw, jute, cellulose): reduce cracking

Pigments: natural earth or mineral-based

Bind Enhancers: casein, linseed oil (optional)

Understanding Setting and Curing

Setting Time: begins 10–60 minutes after mixing

Curing: requires slow drying (up to 7 days) to reduce cracking

Importance of moisture retention and temperature

Pigment Compatibility

pH of plaster can affect pigment stability

Test small samples before full application

Most stable: iron oxides, ochres, sienna

Designing for Breathability

Avoid vapor barriers

Clay and lime finishes allow walls to “breathe”

Prevent mold and regulate interior humidity

Troubleshooting Common Issues

Cracking = too little fiber / drying too fast

Powdery surface = too much water or poor binder

Peeling = bad surface prep or wrong ratio

Sustainable Sourcing Tips

- Partner with construction sites for offcut gypsum
- Source aggregates from demolition or natural sites
- Use local clays or sands when possible

What's Next

Trowel types and uses

Layering finishes

Site prep and masking tips

New European Bauhaus Academy

**Circular
Bio-based
Europe**
Joint Undertaking

Bio-based Industries
Consortium

Co-funded by
the European Union

The project is supported by the Circular Bio-based Europe Joint Undertaking and its members.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CBE JU. Neither the European Union nor the CBE JU can be held responsible for them.