New European Bauhaus Academy

Durability of cycle-pedestrian glulam footbridges.
From monitoring to Design for durability.

Enrico Pez

The project is supported by the Circular Bio-based Europe Joint Undertaking and its members.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CBE JU. Neither the European Union nor the CBE JU can be held responsible for them.

DURABILITY OF CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES

FROM MONITORING TO DESIGN FOR DURABILITY

EAR 08/A - ARCHITETTURA TECNICA

TOPICS

- > Typological characteristics of glulam footbridges
- ▶ Mechanisms of wood degradation
- Consequences of incorrect design, installation and maintenance
- > Typical points of degradation
- ▶ Proposal for a quick comparison system for detailed design solutions according to maximum durability

CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES

A type of building that became very popular in the late 1990s and early 2000s due to the excellent properties of wood as a building material:

- ▶ Building material with a very favourable ratio between mechanical strength and mass
- Natural material suitable for any environment, especially natural ones
- Natural repository of CO₂

AR 08/A – Architettura Tecnica

CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES: CRITICAL ISSUES

- ➤ A design phase that pays little attention to technological details in terms of durability leads to more costly maintenance requirements and/or premature loss of service.
- ▶ Premature loss of service contributes to the spread of a 'bad reputation' for wood as a construction material.

EAR 08/A - ARCHITETTURA TECNICA

EXAMPLES OF MONITORED FOOTBRIDGES

▶ Approximately 15 years of effective service (subsequently closed as a precautionary measure)

EXAMPLES OF MONITORED FOOTBRIDGES

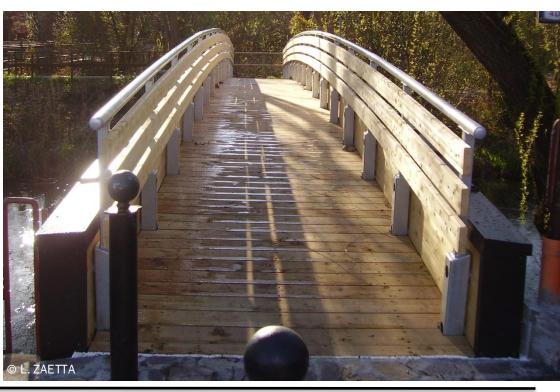
- Duration of less than 20 years
- Demolished without replacement

Types of monitored footbridges

Static scheme		Main	stru	ctur	e		Parapet position				
		hed beams and rs	Longitudinal stool beams and timber crossbars Longitudinal timber beams and steel crossbars	Wooden cross bars only Steel beams and crossbars	d crossbars	т	Timber		Steel		
		Longitudinal st dmber crossba			Steel beams an	Joined to the crossbars	Joined to the glulam beam	Integrated in the beam	Incide the glulam beam	Above the glulum beam	Joined to the crossbars
Simply supported beam	•	•	•			•	•	•	•	-	
Multi- supported beam	•						•				
Simply supported curved beam	•		•	•			•	•	•	•	
Multi-supported curved beam	•		•		•		•	•			
Three-kinged arch	•		•					•		•	
Two/Three-hinged Arch with stiffening elements	•		•				•				
Reticular structure arch	•	•				•				•	
Tied arch	•		•			•	•	•			
Three-kinged arch with intermediate passway	•						•				
Truss bridges with buttresses	•					•					•
Two-span cable-stayed bridges	•		•						•		
Three-span cable-stayed bridges											

Types of timber cycle-pedestrian footbridges

▶ Partially timber-frame/mixed structure



Types of timber cycle-pedestrian footbridges

▶ Covered
▶ Uncovered

DURABILITY OF CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES

DESIGN AMD MAINTENANCE PRACTICES

Types of timber cycle-pedestrian footbridges

▶ Integrated parapet

▶ Dedicated parapet

DURABILITY

- Ability to perform as required, under given conditions of use and maintenance, until the end of useful life
- ► ISO 15686-1:2011 (Building and constructed assets Service life planning part 1: General principles): Capability of a building or its parts to perform its required function over a specified period of time under the influece of the agents anticipated in service
- ▶ For a product, to fulfill its functions (functionality, structural and fire safety, aesthetics...) over a given period under influece of degradation agents

08/A - ARCHITETTURA TECNICA

DURABILITY OF WOOD COMPONENTS

- ▶ Degrading agents

Durability of wood

- Natural durability

DURABILITY OF WOOD COMPONENTS

- ▶ In nature, wood, as an organic material, is broken down by different types of organisms:

 - ▶ Bacteria
- Synergistic physical-chemical demolition of the substances that make up wood (cellulose, hemicellulose, lignin)

EAR 08/A - ARCHITETTURA TECNICA

DURABILITY OF WOOD COMPONENTS

- Natural durability (EN 350:2016): inherent resistance of a wood species or a wood-based materiale agaist wood-decay organisms
 - ▶ Presence of natural components with different levels of toxicity towards biological organism

 - ▷ Specific constitution (wood based materials)

EAR 08/A - ARCHITETTURA TECNICA

Durability of the most common timber species (en 335)

Name		Impregnability			
	Basidiomycetes	Hylotrupes	Anobium	Heartwood	Sapwood
Fir	4	S	S	2-3	2v
Norway Spruce	4	S	S	3-4	3v
Larch	3-4	D	D	4	2v
Redwood	3-4	D	D	3-4	1

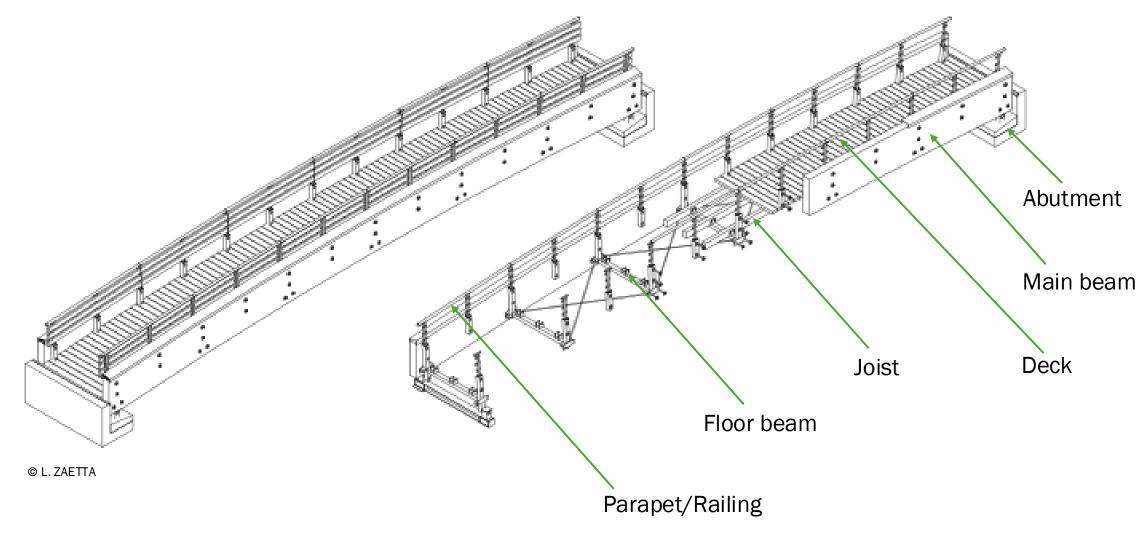
Natural durability: D (durable) – S (not durable)

Impregnability: 1 (easily impregnable) – 4 (very difficult to impregnate)

V: high level of variability in the data

DURABILITY OF WOOD COMPONENTS

- Conferred durability (EN 460:2023): Improved resistance of a wood species to biological degradants provided by a treatment process (chemical, physical, etc.) such as wood preservation or wood modification.


 - > Pressure treatments
 - > Permanent modification treatments (more effective)

CYCLE-PEDESTRIAN FOOTBRIDGES - MAIN COMPONENTS

▶ Main beam – ground contact

DURABILITY OF CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES DESIGN AMD MAINTENANCE PRACTICES

Deck boards – beams contact

Debris accumulation near horizontal surfaces, spaces and boards heads

Durability of cycle-pedestrian glulam footbridges

Design amd Maintenance Practices

EAR 08/A - ARCHITETTURA TECNICA

Main degradation points in sample timber footbridges

Building element	Main degradation type	Main degradation effects	Deterioration	ı causes		
			Environmental and external phenomena	Anthropogenic agents		
				Design	Production / Construction	Maintenance
Main beam support	Marcescence	Reduced cross-sectional area near the head of the beams	Timber-ground contact	•		•
Deck	Marcescence	Early loss of service	Accumulations of wet material near the element heads and in the interspaces	•		•
Beams upper surface	Colour alteration / cracking	Stagnation and water penetration	Meteoric agents	•		•
Beams side surfaces	Colour alteration / cracking	Possible delamination, cracks and water stagnation	Meteoric agents		•	•
Connections distribution and installation	Cracking	Cracks, crushed fibres, colour changes	Timber-metal contact	•	-	

CYCLE-PEDESTRIAN GLULAM FOOTBRIDGES: REQUIREMENTS

- ➤ The service life of footbridges should be at least 50 years: many of the footbridges monitored have shown serious problems and required costly repairs even before reaching 10 years of operation.
- ➤ For proper design in terms of durability, it is necessary to clearly identify the boundary conditions (exposure) to which the various components of the walkway will be subjected.

EXPOSURE CLASSIFICATION: SERVICE CLASSES (EN 1995-1:2004)

Service Classes	Moisture content of wood (reference values for most softwoods)	Environmental conditions
SC1	≤ 12%	Temperature 20°C, relative humidity of surrounding air > 65% for a few weeks per year
SC2	≤ 20%	Temperature 20°C, relative humidity of surrounding air > 85% for a few weeks per year
SC3	> 20%	Higher moisture content than class SC2

> "The service class system is mainly aimed at assigning strenght values and for calculating deformations under defined environmental conditions."

EXPOSURE TO DEGRADING AGENTS CLASSIFICATION: USE CLASSES

Use Class			General service condition	Biological degragents	ading	Footbridge Components	
				Fungi	Insects Marine borers		
UC 1	Always < 20%		Interior, dry	-	Termites Beetles	-	
UC 2	Occasionally > 20%	у	Interior/Under cover, not exposed to the wheater, possibility of water condensation	Ascomycetes Basidiomycetes	Termites Beetles	Roof beams (covered footbridges)	
UC 3	Regularly > 20% Not in ground or	3.1 Limited humidification	Exterior, above ground, exposed to the weather	Ascomycetes Basidiomycetes	Termites Beetles	Floor planks Cladding elements Main beams Railings	
	water	3.2 Prolonged humidification		Ascomycetes Basidiomycetes	Termites Beetles	Floor planks, near heads Joists Main beams, near points of contact with the ground	

EXPOSURE TO DEGRADING AGENTS CLASSIFICATION: USE CLASSES

Use	Moisture content of	General service condition	Biological degr	Footbridge	
Class	wood		Fungi	Insects Marine borers	Components
UC 4	Permanently > 20%	Exterior, in ground contact and/or fresh water	Ascomycetes Basidiomycetes Softrot	Termites Beetles	Pillars
UC 5	Permanently in seawater	Permanently or regularly submerged in salt water	Ascomycetes Basidiomycetes Softrot	Termites Beetles Marine borers	Pillars

:AR 08/A – Architettura Tecnica

SERVICE - USE CLASSES POSSIBLE CORRELATION (EN 335:2013)

Service Classes	Use Classes
SC1	UC1
SC2	UC1 UC2 (Occasional humidification of the component, e.g. condensation moisture)
SC3	UC2 UC3 (Classes even higher if component is placed outdoor)

DESIGNING DURABILITY IN FOOTBRIDGES (EN1995-2:2004)

- Covering structural timber elements when possible
- ▶ If not, durability can be increased through:
 - Designing surface geometry to prevent stagnation and remove any water that may have accumulated
 - 2. Preventing cracks and cavities
 - 3. Preventing capillary absorption with appropriate barriers
 - 4. Promoting natural ventilation of all wooden parts
 - 5. Limiting humidity variations by choosing a material humidity as close as possible to the service conditions

EAR 08/A - ARCHITETTURA TECNICA

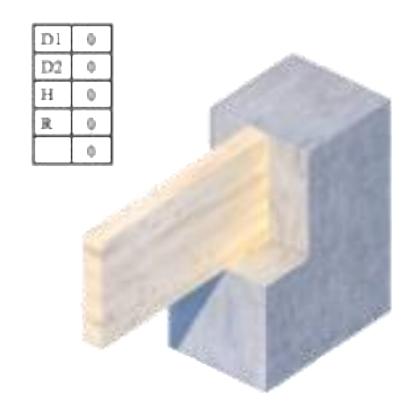
AVOID GROUND CONTACT: SOME DESIGN CONSIDERATIONS

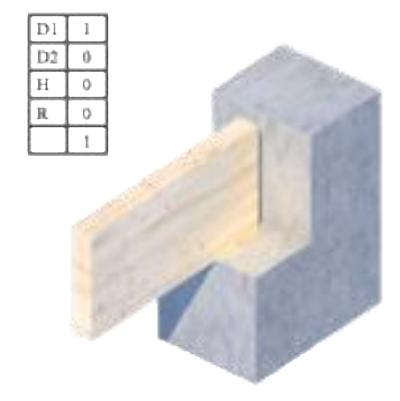
- ▶ Abutment modelling for water drainage
- ▶ Beam head ventilation

AR 08/A - ARCHITETTURA TECNICA

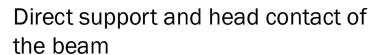
AVOID WATER CONTACT: SOME DESIGN CONSIDERATIONS

- ▶ Beam head cladding
- Natural ventilation of deck boards ends





DESIGN FOR DURABILITY: CONTACT BEAM-GROUND

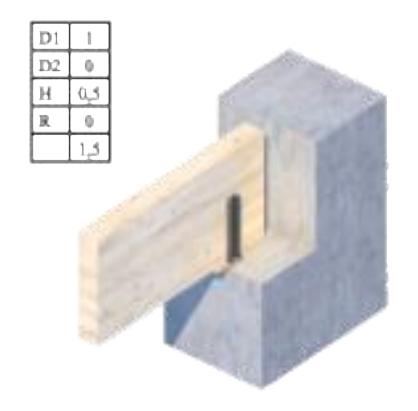

Evaluation of performance to individual factors:

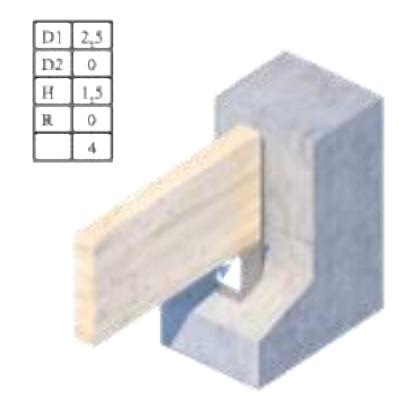
D1 - direct runoff

D2 - indirect runoff

H - stagnation and infiltration moisture

R - solar radiation


Direct support and head contact of the beam



DESIGN FOR DURABILITY: CONTACT BEAM-GROUND

Evaluation of performance to individual factors:

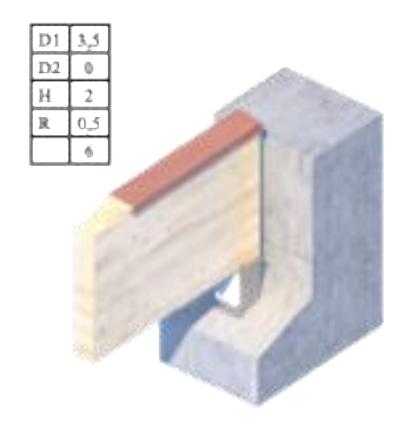
D1 - direct runoff

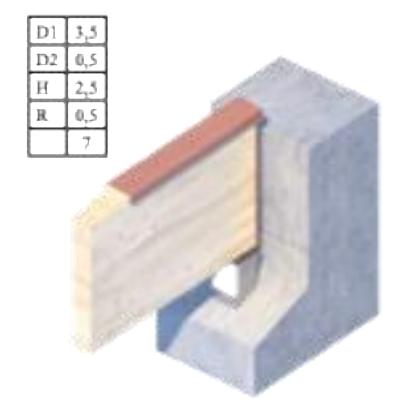
D2 - indirect runoff

H - stagnation and infiltration moisture

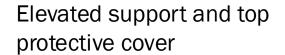
R - solar radiation

Indirect support with minimum elevation


Elevated support with inclined edge for water detachment



DESIGN FOR DURABILITY: CONTACT BEAM-GROUND


Evaluation of performance to individual factors:

D1 - direct runoff

D2 - indirect runoff

H - stagnation and infiltration moisture

R - solar radiation

elevated support with insulating element between wood and metal and top and top protective cover

REFERENCES

- 1. Pousette A., Malo K. A., Thelandersson S., Fortino S., Salokangas L., Wacker J. (2017) *Durable Timber Bridges. Final Report and Guidelines.* RISE Research Institutes of Sweden, Skellefteå.
- 2. Maggi A., Navone N. (a cura di) (2002) John Soane e i ponti in legno svizzeri. Architettura e cultura tecnica da Palladio ai Grubenmann. Mendrisio Academy Press, Mendrisio.
- 3. Ritter M. A. (1990) *Timber Bridges. Design, Construction, Inspection and Maintenance.* United States Department of Agriculture Forest Service, Washington.
- 4. AA. VV. (2011) Linee guida per l'edilizia in legno in Toscana. Edizioni Regione Toscana.
- 5. Laner F. (2005) Durabilità e manutenzione delle costruzioni in legno. Promo_legno, Milano.
- 6. Uwizeyimana P., Perrin M., Laügt E., Eyma F. (2012) *Durability study of glulam timber under cyclic moisture loading.* In: Construction and Building Materials 315, art. 125715. Elsevier Ltd., Amsterdam.
- 7. Palanti S. (2013) Durabilità del legno. Diagnosi del degradamento, trattamenti preventivi e curativi. Dario Flaccovio Editore, Palermo.
- 8. Brischke C., Behnen C. J., Lenz M. T., Brandt K., Melcher E. (2012) *Durability of oak timber bridges. Impact of inherent wood resistance and environmental conditions.* In: International Biodeterioration & Biodegradation 75, pp. 115-123. Elsevier Ltd., Amsterdam.
- 9. Smith G. A., Orsler R. J. (1996) The biological natural durability of timber in ground contact. BRE, Watford.

REFERENCES

- 10. Follesa M., Lauriola M. P., Moschi M. (2011) *Durabilità e manutenzione delle strutture di legno.* Federlegno Arredo, Milano.
- 11. Zaetta L. (2006) Il problema della durabilità delle strutture in legno lamellare: analisi comparate di soluzioni tecnologiche ai fini della redazione di un manuale di progettazione. Tesi di Laurea, Università degli Studi di Udine.
- 12. Pazlar T., Kramar M. (2014) Assessment of Timber Bridges in Slovenia. In: Franke S., Franke B., Widmann R. COST Timber Bridge Conference CTBC 2014, pp. 117-122. Bern University of Applied Sciences, Biel.
- 13. Cavalli A., Esposito M., Togni M. (2014) State of conservation of unprotected timber footbridges in Central/Northern Italy. In: Franke S., Franke B., Widmann R. COST Timber Bridge Conference CTBC 2014, pp. 117-122. Bern University of Applied Sciences, Biel.
- 14. Laner F. (2003) Capire le fessure nel legno strutturale. Legnoindustria, Milano.
- 15. Hazleden D. G., Morris P. I. (1999) Designing for durable wood construction: The 4 Ds. In: Lacasse M.A., Varnier D.J. Durability of Building Materials and Components 8, pp. 734-745. National Research Counsil press, Ottawa.
- 16.Gon S. (2007) Analisi tipologiche e tecnologiche di ponti e passerelle in legno lamellare finalizzate allo studio della durabilità. Tesi di Laurea, Università degli Studi di Udine.

